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Abstract: The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
resulting in the COVID-19 pandemic, has profoundly impacted global healthcare systems and the
trajectory of economic advancement. As nations grapple with the far-reaching consequences of this
unprecedented health crisis, the administration of COVID-19 vaccines has proven to be a pivotal
strategy in managing this crisis. Protein-based vaccines have garnered significant attention owing
to their commendable safety profile and precise immune targeting advantages. Nonetheless, the
unpredictable mutations and widespread transmission of SARS-CoV-2 have posed challenges for
vaccine developers and governments worldwide. Monovalent and multivalent vaccines represent two
strategies in COVID-19 vaccine development, with ongoing controversy surrounding their efficacy.
This review concentrates on the development of protein-based COVID-19 vaccines, specifically
addressing the transition from monovalent to multivalent formulations, and synthesizes data on
vaccine manufacturers, antigen composition, pivotal clinical study findings, and other features that
shape their distinct profiles and overall effectiveness. Our hypothesis is that multivalent vaccine
strategies for COVID-19 could offer enhanced capability with broad-spectrum protection.
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1. Introduction

Since the World Health Organization (WHO) reported the first case of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on 31 December 2019 [1],
the WHO has documented more than 774 million confirmed COVID-19 cases and more
than 7 million deaths as of 18 February 2024 [2]. In contrast to measures, like public
transport closures, remote work, and full lockdowns, implemented for epidemic control,
vaccination has emerged as a proven cost-effective and efficient strategy against the COVID-
19 pandemic [3–5].

A variety of platforms, including inactivated virus, viral vectors, protein-based vac-
cines, and innovative mRNA vaccines, are currently used in COVID-19 vaccines, either
licensed or in development [6]. While the administration of COVID-19 vaccines has signifi-
cantly reduced mortality, severe disease, and overall disease burden, thereby facilitating
the reopening of societies, evidence over the past three years suggests that the virus is
continuously evolving, leading to the emergence of new variants or sub-lineages in the
future [7]. Concerns about waning immunity over time, increased transmissibility, and
immune escape due to the evolving SARS-CoV-2 variants persist [8,9]. The emergence
of the SARS-CoV-2 Omicron JN.1 variant was initially identified in the United States in
September 2023 and was the predominant variant in the country until 23 December 2023.
Concurrently, the incidence of COVID-19-related hospitalizations has shown an upward
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trend since 4 November 2023, presenting a significant challenge to currently approved
COVID-19 vaccines.

The evolutionary trajectory of SARS-CoV-2 is characterized by uncertainty. Since 2020,
there has been a tendency for multiple SARS-CoV-2 variants or subvariants to coexist [10].
The use of monovalent or multivalent vaccine strategies in COVID-19 vaccine development
is still under debate. Recognizing the immune-evasive nature of XBB-derived lineages,
both the Vaccines and Related Biological Products Advisory Committee (VRBPAC) and
Technical Advisory Group on COVID-19 Vaccine Composition (TAG-CO-VAC) recom-
mended a mono-antigen composition for the 2023–2024 COVID-19 vaccine formulation,
focusing on the Omicron XBB.1.5 subvariant spike protein [11,12]. However, considering
uncertainties about the timing, specific mutations, and antigenic characteristics of future
variants, developing multivalent COVID-19 vaccines with careful antigen selection and
combinations may also be a viable solution. Several multivalent COVID-19 vaccines with a
broad spectrum against current and emerging variants of SARS-CoV-2 have been approved,
including the Bivalent (Omicron BA.1 and Original) BNT162b2 vaccine [13], Bivalent (Omi-
cron BA.4/BA.5 and Original) BNT162b2 vaccine [14], Bivalent (Omicron BA.1 and Original)
mRNA-1273.214 vaccine [15], Bivalent (Omicron BA.4/BA.5 and Original) mRNA-1273.222
vaccine [16], NVSI-06-08 (recombinant protein vaccine, three heterologous RBDs from Orig-
inal, Beta and Kappa SARS-CoV-2 strain, Sinopharm) [17], SYS6006 (mRNA vaccine, based
on the sequence of S protein of Original and Omicron BA.4/BA.5, Zhongqi Pharmaceutical
Technology Co., Ltd. of CSPC Pharmaceutical Group. Ltd.) [18,19], SCTV01C (recombinant
protein vaccine, bivalent from Alpha and Beta, Sinocelltech Ltd.) [20], and SCTV01E (recom-
binant protein vaccine, tetravalent from Alpha, Beta, Delta, and Omicron BA.1, Sinocelltech
Ltd.) [21,22]. During the Omicron XBB variants and subvariants pandemic, the National
Medical Products Administration (NMPA) in China authorized five multivalent COVID-19
vaccines, including four protein-based COVID-19 vaccines and one mRNA COVID-19
vaccine (SYS6006.32, based on S protein of Original and Omicron XBB.1.5/BQ.1, CSPC
Pharmaceutical Group. Ltd.).

Thus, in this review, we analyzed the dynamic antigen compositions of protein-
based COVID-19 vaccines authorized by various regulatory authorities, including the
Food and Drug Administration (FDA), the European Medicines Agency (EMA), and the
National Medical Product Administration (NMPA) in China. Additionally, we provided
a comprehensive summary of the efficacy and immunogenicity of both monovalent and
multivalent protein-based COVID-19 vaccines against both antigen-matched and antigen-
mismatched variants.

2. Protein-Based COVID-19 Vaccines

Recognized as one of the safest and most extensively utilized vaccine platforms,
protein-based vaccines have demonstrated high efficacy in preventing diseases, such as
hepatitis B and C, influenza, pertussis, and human papillomavirus [23]. The antigens of
protein-based vaccines are usually recombinant proteins, which were generated by various
cell-expressing systems, including bacteria, yeasts, insects, and mammalian cells, using
viral proteins or peptides as their basis [23]. Administrated with an appropriate adjuvant,
these recombinant proteins tend to provide a more robust and durable immunization.

Though they present prominent advantages, protein-based vaccines pose several
challenges, including the possible need for adjuvants and multiple inoculations, which can
increase the risk of adverse reactions [24]. The complex manufacturing process, with its high
costs and specialized requirements, may restrict scalability and accessibility, particularly
in resource-limited settings [25]. Furthermore, variations in antigen choices, adjuvant
incorporation, and individual immune system responses can yield inconsistent vaccine
effectiveness across different populations. Specifically concerning SARS-CoV-2 vaccines,
those primarily focusing on the receptor-binding domain (RBD) of the spike protein might
lack the epitope diversity present in the full-length spike, potentially reducing their efficacy
against emerging viral variants [26].
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Presently, twelve protein-based COVID-19 vaccine candidates have obtained approval
or emergency use authorization (EUA) in at least one country or region within the United
States, Europe, or China (Table 1), including both monovalent and multivalent vaccines.
Notable examples of monovalent vaccines include NVX-CoV2373, Novavax COVID-19
Vaccine, Adjuvanted (2023–2024 Formula), ZF2001, Vidprevtyn Beta, V-01 and SCB-2019,
and the multivalent protein-based COVID-19 vaccines include Novel Recombinant COVID-
19 Bivalent (Original/Omicron XBB) Vaccine (CHO cell), Recombinant COVID-19 Trivalent
(XBB + BA.5 + Delta) Protein Vaccine (Sf9 Cell), Bimervax, SCTV01C, SCTV01E, and
SCTV01E-2 [27,28].

Table 1. Vaccine information and approved indications in FDA/EMA/NMPA.

Vaccine Manufacture Antigen Variant Adjuvant Approved
Authorities

Approved Indication and
Populations

NVX-CoV2373 Novavax Wuhan Matrix-M FDA and
EMA

Primary series for individual
aged ≥ 12 years

Booster for individual ≥ 18 years

Novavax COVID-19
Vaccine (2023–2024

Formula)
Novavax XBB.1.5 Matrix-M FDA and

EMA
Primary series and booster for
individuals aged ≥ 12 years

ZF2001
Anhui Zhifei

Longcom
Biopharmaceutical

Wuhan-Hu-1 Aluminum
hydroxide NMPA Primary series and booster for

individuals aged ≥ 3 years

V-01 Livzon
Mabpharm Inc Wuhan Aluminum

hydroxide NMPA Booster for individuals ≥ 18 years

Vidprevtyn Beta Sanofi & GSK Beta AS03 EMA Booster for individuals ≥ 18 years

SCB-2019 Clover Biopharma-
ceuticals Wuhan-Hu-1 CpG 1018/Alu-

minum NMPA Booster for individuals ≥ 18 years

SCTV01C Sinocelltech Ltd. Alpha, Beta SCT-VA02B NMPA Booster for individuals ≥ 18 years

SCTV01E Sinocelltech Ltd. Alpha, Beta,
Delta, BA.1 SCT-VA02B NMPA Booster for individuals ≥ 18 years

SCTV01E-2 Sinocelltech Ltd. Beta, BA.1,
BQ.1.1, XBB.1 SCT-VA02B NMPA Booster for individuals ≥ 18 years

Bimervax Laboratorios Hipra,
S.A. Alpha, Beta SQBA EMA Booster for individuals ≥ 16 years

Recombinant
Trivalent Protein
Vaccine (Sf9 Cell)

WestVac
Biopharma

XBB, BA.5,
Delta

MF59-like
adjuvant NMPA Booster for individuals ≥ 18 years

Novel Recombinant
Bivalent (Original/

Omicron XBB)
Vaccine (CHO cell)

Livzon
Mabpharm Inc

Original,
Omicron XBB

Aluminum
hydroxide NMPA Booster for individuals ≥ 18 years

FDA: Food and Drug Administration in the United States; EMA: European Medicines Agency; NMPA: National
Medical Products Administration in China.

In response to the relentless evolutionary dynamics of the novel variants or subvariants
of SARS-CoV-2, characterized by the emergence of new variants or subvariants with distinct
mutations, the antigenic composition of the vaccine has been strategically adapted and
refined to align with these shifting molecular landscapes (Figure 1; publications related to
the key clinical studies are summarized in Table 2).
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Figure 1. The EUA/approval time of the protein-based COVID-19 vaccines.

Table 2. Summary of key published papers for the approved protein-based COVID-19 vaccines.

Vaccine Name Antigen Variant Year Journal Content Reference

NVX-CoV2373 Wuhan

2021 The New England Journal of
Medicine Efficacy and safety [29]

2022 The New England Journal of
Medicine Efficacy and safety [30]

2023 Clinical Infectious Diseases Efficacy and safety [31]

2022 medRxiv Immunogenicity and efficacy [32]

2022 Open Forum Infectious
Diseases Immunogenicity and safety [33]

2021 Lancet Immunogenicity and safety [34]

Novavax COVID-19
Vaccine (2023–2024

Formula)
XBB.1.5 2023 Scientific Reports Immunogenicity

(pre-clinical study) [35]

ZF2001 Wuhan-Hu-1

2021 Lancet Infectious Disease Safety and immunogenicity [36]

2022 The New England Journal of
Medicine Efficacy and safety [37]

2023 The Lancet Child &
Adolescent Health Immunogenicity and safety [38]

V-01 Wuhan 2022 Emerging Microbes &
Infections Efficacy and safety [39]

Vidprevtyn Beta Beta 2023 Research Square Immunogenicity and safety [40]
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Table 2. Cont.

Vaccine Name Antigen Variant Year Journal Content Reference

SCB-2019 Wuhan-Hu-1

2022 Lancet Efficacy and safety [41]

2023 Human Vaccines &
Immunotherapeutics Immunogenicity and safety [42]

2024 Human Vaccines &
Immunotherapeutics Immunogenicity and safety [43]

SCTV01C Alpha, Beta
2023 Journal of Infection Immunogenicity and safety [44]

2023 EBioMedicine Immunogenicity and safety [45]

SCTV01E Alpha, Beta, Delta,
BA.1

2023 EClinicalMedicine Immunogenicity and safety [46]

2023 Nat Communication Immunogenicity and safety [47]

2024 Cell Host Microbe Immunogenicity and safety [48]

SCTV01E-2 Beta, BA.1, BQ.1.1,
XBB.1 2024 Vaccines (Basel) Immunogenicity and safety [49]

Bimervax Alpha, Beta 2023 Lancet Regional Health
Europe Immunogenicity and safety [50]

These vaccines have demonstrated the ability to elicit a robust neutralizing antibody
(nAb) response and significant Th1 and Th2 cell responses against SARS-CoV-2 and its
variants. Furthermore, they exhibit safety and reactogenicity profiles that are favorable and
comparable to conventional inactivated COVID-19 vaccines [51]. Taking the advantage
of thermostability, protein-based vaccines can be stored and transported at temperatures
ranging from 2 to 8 ◦C [52]. This characteristic ensures their accessibility in resource-limited
regions and provides a cost-effective solution for widespread distribution.

2.1. Monovalent COVID-19 Vaccines
2.1.1. Nuvaxovid (NVX-CoV2373)/Novavax XBB.1.5 Vaccine 2023–2024 Formulation

Nuvaxovid (NVX-CoV2373) was the first protein-based COVID-19 vaccine approved
in the European Union on 20 December 2021, followed by approvals in the United Kingdom
on 3 February 2022, and the United States on 19 October 2022 [53–55]. It contains the
full-length S protein of the prototype strain and the adjuvant Matrix-M, triggering a
strong immune response, involving both B and T lymphocytes against the SARS-CoV-2 S
protein [56,57].

Authorization for Nuvaxovid was based on data derived from two phase 3 and
one phase 2 clinical studies (Table 3) [29,30]. The first phase 3 study, conducted in the
United Kingdom, involved 14,039 adults aged over 18 years who were negative for SARS-
CoV-2 infection at baseline. Participants received two doses of Nuvaxovid or placebo,
given 21 days apart [29]. The vaccine showed 89.7% efficacy against symptomatic SARS-
CoV-2 infection seven days after the second dose. Post hoc analysis also found vaccine
efficacy of 86.3% against the Alpha SARS-CoV-2 variant and an impressive 96.4% vac-
cine efficacy against non-Alpha SARS-CoV-2 variants, primarily the prototype strain
(Table 4) [29,58].
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Table 3. Pivotal studies on protein-based COVID-19 vaccines.

Vaccine Identifier Phase Primary/Booster
Dose

Age
(Years) n Location Status

NVX-CoV2373

NCT04583995 III Primary 18–84 14,039 UK Completed

NCT04611802 III Primary ≥12 31,829 US and Mexico (≥18 years);
US (≥12 years) Completed

ISRCTN
73765130 II Booster ≥30 2878 UK Completed

ZF2001
NCT04646590 III Primary ≥18 28,873 China, Ecuador, Indonesia,

Pakistan, Uzbekistan Completed

NCT05109598 II Primary 3~17 400 China Completed

V-01 NCT05096832 III Booster ≥18 10,241 Pakistan, Malaysia Completed

Vidprevtyn Beta NCT04762680 II/III Booster ≥18 543
US, Honduras, Kenya,
Mexico, New Zealand,

Panama, Spain, UK
Completed

NCT05124171 III Booster ≥18 162 France Completed

SCB-2019

NCT04672395 II/III Primary ≥18 30,128
Belgium, Brazil,

Colombia, Philippines,
and South Africa

Completed

Extended of
NCT04672395

Primary 12–17 1280 Belgium, Colombia,
Philippines Completed

NCT05188677 III Booster 18–80 1330 Philippines Completed

SCTV01C
NCT05043285 I/II Booster ≥18 234 United Arab Emirates Completed

NCT05043311 I/II Booster ≥18 234 United Arab Emirates Completed

SCTV01E
NCT05323461 III

Booster ≥18 1351 United Arab Emirates Completed

Booster ≥18 451 United Arab Emirates Completed

NCT05308576 III Booster ≥18 9223 China ongoing

SCTV01E-2 NCT05933512 II Booster ≥18 429 China ongoing

Bimervax
NCT05142553 IIb Booster ≥18 887 Spain Completed

NCT05246137 III Booster ≥18 2661 Italy, Spain Completed

Recombinant
Trivalent Protein
Vaccine (Sf9 Cell)

NCT05911061 III Booster ≥18 1905 -- Completed

Table 4. Efficacy of protein-based COVID-19 vaccines against symptomatic SARS-CoV-2 infection.

Vaccines Age
(Years) n Dosage Time for

Efficacy
Median Time for

Efficacy Follow-Up

Efficacy
Reference

Overall
Efficacy

Efficacy for
Specific Variants

NVX-CoV2373

18–84 14,039 2

7 days after the
second dose 3 months 89.7% Alpha: 86.3%

Non-Alpha: 96.4% [29]

7 days after the
second dose 4.5 months 82.7% [31]

≥18 29,582 2 7 days after the
second dose 3 months 90.4% Alpha: 93.6%

Non-Alpha: 92.6% [30]

12~17 2247 2 7 days after the
second dose 2 months 79.5% Delta: 82.0% [32]
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Table 4. Cont.

Vaccines Age
(Years) n Dosage Time for

Efficacy
Median Time for

Efficacy Follow-Up

Efficacy
Reference

Overall
Efficacy

Efficacy for
Specific Variants

ZF2001 ≥18 28,873 3
7 days after the

third dose

50 days † 81.4%
Delta: 81.4%
Alpha: 92.7%

Kappa+ B.1.617.3:
84.8%

[37]

178 days † 75.7%
Delta: 76.1%
Alpha: 88.3%
Kappa: 75.2%

V-01 ≥18 10,241 1 14 days after
vaccination 60 days 47.8% Omicron: 47.0%

Delta: 79.9% [39]

SCB-2019 ≥18 30,128 2 14 days after the
second dose 82 days 67.2%

Delta: 78.7%
Gamma: 91.8%

Mu: 58.6%
[41]

Recombinant
Trivalent Protein
Vaccine (Sf9 Cell)

≥18 years 5855 1 14 days after the
second dose -- 93.28% -- [59]

The definition of symptomatic SARS-CoV-2 infection may be different between the various COVID-19 vaccines; a
direct comparison of vaccine efficacy would be misleading. † Mean time for efficacy follow-up.

The second phase 3 study, conducted in Mexico and the United States, enrolled
29,582 participants aged over 18 years with no previous SARS-CoV-2 infection. Participants
were randomized at a 2:1 ratio to receive two doses of Nuvaxovid or placebo, with a 21-day
interval between doses [30]. The vaccine demonstrated an efficacy of 90.4% against reverse
transcriptase-polymerase chain reaction (RT-PCR)-confirmed SARS-CoV-2 infection seven
days after the second vaccine dose [30]. Notably, Nuvaxovid exhibited an efficacy of
93.6% against the Alpha variant and 92.6% against all variants of concern (VOCs) or
variants of interest (VOIs), including Alpha, Beta, Gamma, Epsilon, Iota, Kappa, and Zeta
(Table 4) [30]. Following the completion of two phase 3 studies outlined above, Nuvaxovid
received EUA for individuals aged 18 years or older. Subsequently, in the primary extension
series, 2247 adolescents aged 12 to 17 years were assigned to receive either two doses of
Nuvaxovid or saline placebo, administered with a 21-day interval between doses [32]. With
a median efficacy follow-up period of 2 months, Nuvaxovid exhibited an efficacy of 79.5%
(20 COVID-19 cases were reported, 6 in the Nuvaxovid group, and 14 in the placebo group).
Notably, all sequenced viral genomes were identified as the Delta variant, showcasing an
efficacy of 82.0% (Table 4) [32]. Consequently, based on the findings of the extension study,
Nuvaxovid was granted approval for individuals aged 12 to 17 years.

Considering the waning immunogenicity and efficacy of COVID-19 vaccines over
time, the administration of booster doses became imperative. The immunogenicity of
Nuvaxovid as a first booster dose was assessed in healthy adults aged 18 years or older.
In an ad hoc analysis of PREVENT-19 (NCT04611802), 298 participants received a single
booster dose of Nuvaxovid at least 6 months following completion of the initial two-dose
regimen [33]. This study revealed that humoral responses remained robust, regardless
of the interval between primary series and booster vaccinations, although an extended
interval led to enhanced responses. Additionally, increased immune responses against the
Omicron BA.1, BA.2, and BA.5 variants were noted following booster shots compared to
post-primary vaccinations in a subset of 14–18 participants tested [33].

A UK Phase 2 trial enrolled 2878 people aged 30 years and above who had received
two doses of ChAdOx1 nCov-19 or BNT162b2. They were randomized to receive full or half
doses of Nuvaxovid, other vaccines, or a placebo [34]. Nuvaxovid, given as a heterologous
booster, significantly raised antibodies against the initial SARS-CoV-2 virus. Consequently,
Nuvaxovid was approved as a first booster, to be given at least six months post-primary
COVID-19 vaccination for those aged 18 years and above. Common side effects—mostly
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mild to moderate and short-lasting, resolving within days—included injection site reactions,
fatigue, muscle and joint pain, headache, and gastrointestinal issues [54].

The emergence of SARS-CoV-2 XBB subvariants prompted a need for vaccine updates
due to waning immunity. Heeding advice from VRBPAC and TAG-CO-VAC, the 2023–2024
COVID-19 vaccine formulation was recommended to focus on XBB lineages [11,12]. No-
vavax swiftly developed a monovalent protein-based vaccine derived from NVX-CoV2373,
specifically targeting the XBB.1.5 subvariant, presenting the full-length spike protein in
its native form with the Matrix-MTM adjuvant [35]. This formulation robustly stimulates
neutralizing antibodies against multiple XBB subvariants and fosters Th1-skewed CD4+

T-cell responses in animal models, including those previously vaccinated with different
formulations [35]. Based on these findings, the US FDA issued an Emergency Use Au-
thorization for the Novavax XBB.1.5 Vaccine for individuals 12 and older on 3 October
2023 [60].

2.1.2. ZF2001

ZF2001, a vaccine from Anhui Zhifei Longcom Biopharmaceutical, which uses a
tandem-repeat dimeric receptor-binding domain (RBD) from the Wuhan-Hu-1 SARS-CoV-
2 spike protein with aluminum hydroxide as an adjuvant [36], has been approved in
China, Uzbekistan, Indonesia, and Colombia [61]. A large-scale Phase 3 trial assessed its
effectiveness and safety in adults, revealing an 81.4% efficacy against COVID-19 of any
severity by 30 June 2021, with specific efficacies of 81.4% for Delta, 92.7% for Alpha, and
84.8% for Kappa plus B.1.617.3 variants (Table 4) [37,62]. By 15 December 2021, after the
third dose, efficacy stood at 75.7%, showing 76.1% against Delta, 88.3% against Alpha, and
75.2% against Kappa in a subsequent analysis. Separately, ZF2001 also showed a promising
humoral immune response against circulating SARS-CoV-2 variants, notably including the
Beta variant (Table 4) [63].

ZF2001’s approval for healthy children and teenagers aged 3–17 was grounded by a
Phase 1 randomized, double-blind, placebo-controlled trial and a Phase 2 open-label, non-
randomized, non-inferiority study (Table 3). Phase 1 showed a 93% seroconversion rate for
neutralizing antibodies against the original SARS-CoV-2, with a GMT of 176.5 post-third
dose (Table 5) [38]. In Phase 2, 99% seroconversion against the prototype virus was recorded
14 days after the third dose, with a GMT of 245.4, outperforming the 18–59 age group’s 86%
conversion (Table 5) [38]. For Omicron BA.2, seroconversion reached 95% in the 3–17 age
bracket versus 39% in 18–59-year-old patients. The adjusted geometric mean ratio (GMR)
of the GMT for nAb against the prototype in the younger group was 8.6 (95% CI 7.0–10.4),
surpassing the 0.67 non-inferiority threshold (Table 5) [38], with analogous outcomes for
the BA.2 subvariant [38].

The efficacy study showed common mild reactions like injection-site pain and headache,
with most ZF2001-related adverse events graded as 1 or 2. Only four severe adverse events
deemed product-related were reported [37]. Participants aged 3–17 experienced similar
AE rates to those 18–59 (around 40%) [36], higher than the ≥60 age group (29%) [37], with
most AEs being grade 1 or 2, consistent with adult findings [36,37].
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Table 5. Immunogenicity of the protein-based COVID-19 vaccines.

Vaccine Age
(Years) n Dosage Pseudo/

Live-Virus Variant GMT GMR (95% CI) Seroconversion
Rate Reference

ZF2001

3–17 75 3 Live Prototype 176.5 (118.6, 262.8) 93% [38]

3–17 400 3 Live Prototype
BA.2

245.4 (220.0, 273.7)
42.9 (37.9, 48.5)

3–17 years/18–59 years
8.6 (7.0, 10.4)

10.6 (9.1, 12.5)

99%
95% [38]

Vidprevtyn Beta

≥18 162 1 Pseudo
BA.1

BA.4/5
D614G

Vidprevtyn Beta/BNT162b2
2.53 (1.80, 3.57)
2.50 (1.70, 3.67)
1.43 (1.06, 1.94)

100.0%
96.2% [40,64]

≥18 543 1 Pseudo

D614G
Beta

D614G
Beta

mRNA vaccine primed
10,814 (9793, 11,941)

7501 (6754, 8330)
Ad-vector vaccine primed

6565 (5397, 7986)
5077 (4168, 6185)

[64]

SCB-2019

12–17 1280 2 Live Prototype 12–17 years/18–25 years
1.9 (1.3–3.0) 86% [42]

18–80 1330 1 Live Prototype

SCB-2019/Comirnaty
0.36 (0.31, 0.41);

SCB-2019/CoronaVac
4.63 (3.96, 5.41);

SCB-2019/Vaxevria
1.68 (1.46, 1.93)

[43]

SCTV01C

≥18 234 1 Live Delta
Omicron

3891 (3432, 4412)
870 (752, 1007)

13.1 (10.3, 16.9)
14.7 (11.0, 19.7) [44]

≥18 234 1 Live Delta
Omicron

3816 (3382, 4305)
833 (713, 973)

3.1 (2.5, 3.8)
4.0 (3.1, 5.1) [45]
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Table 5. Cont.

Vaccine Age
(Years) n Dosage Pseudo/

Live-Virus Variant GMT GMR (95% CI) Seroconversion
Rate Reference

SCTV01E

≥18 1351 1 Live
Delta
BA.1
BA.5

BBIBP-CorV: 667 (541, 823)
SCTV01C: 4171 (3545, 4906)
SCTV01E: 4760 (3939, 5752)
BBIBP-CorV: 219 (167, 286)
SCTV01C: 1262 (1056, 1509)
SCTV01E: 1926 (1557, 2382)
BBIBP-CorV: 324 (251, 419)
SCTV01C: 2203 (1872, 2593)
SCTV01E: 2636 (2227, 3120)

SCTV01C/BBIBP-CorV: 6.26
SCTV01E/BBIBP-CorV: 7.26

SCTV01E/SCTV01C: 1.15
SCTV01C/BBIBP-CorV: 6.49
SCTV01E/BBIBP-CorV: 9.56

SCTV01E/SCTV01C: 1.50
SCTV01C/BBIBP-CorV: 7.11
SCTV01E/BBIBP-CorV: 8.61

SCTV01E/SCTV01C: 1.20

[46]

≥18 451 1 Live BA.1
BA.5

BNT162b2: 1049 (923, 1193)
SCTV01C: 1189 (1027, 1376)
SCTV01E: 1659 (1445, 1904)
BNT162b2: 1687 (1471, 1936)
SCTV01C: 1736 (1517, 1987)
SCTV01E: 2281 (1993, 2610)

SCTV01E/BNT162b2:
1.55 (1.30, 1.85)

SCTV01E/SCTV01C:
1.44 (1.19, 1.74)

SCTV01E/BNT162b2:
1.28 (1.07, 1.54)

SCTV01E/SCTV01C:
1.33 (1.10, 1.61)

[47]

SCTV01E-2 ≥18 429 1 Live EG.5
XBB.1

SCTV01E-2: 924 (823, 1037)
SCTV01E: 510 (454, 573)

SCTV01E-2: 1887 (1686, 2112)
SCTV01E: 1435 (1267, 1626)

1.8 (1.5, 2.1)
1.3 (1.1, 1.5)

SCTV01E-2:
78.9%

SCTV01E: 61.6%
SCTV01E-2:

68.5%
SCTV01E: 62.4%

[49]
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Table 5. Cont.

Vaccine Age
(Years) n Dosage Pseudo/

Live-Virus Variant GMT GMR (95% CI) Seroconversion
Rate Reference

Bimervax

≥18 765 1 Pseudo

D614G
Beta
Delta
BA.1

1.71 (1.45, 2.02)
0.62 (0.52, 0.75)
1.02 (0.86, 1.21)
0.60 (0.50, 0.72

[50,65]

≥16 2661 1 Pseudo
D614G/Beta/Delta/BA.1
D614G/Beta/Delta/BA.1
D614G/Beta/Delta/BA.1

Comirnaty primed
4753.65/8820.74/7564.79/5757.43

Ad26.COV2-S primed
2298.81/5009.47/2600.31/1847.41

Spikevax primed
4437.27/6857.95/5811.47/4379.81

[65]

Recombinant
Trivalent Protein
Vaccine (Sf9 Cell)

≥18 2905 1 Live
XBB.1.5/XBB.1.16

XBB.1.9.1/XBB.2.3/BQ.1
BF.7/BA.4/5/BA.2.75

1728.6/1093.67
616.03/1112.53/1329.77

2052.44/3235.68/3681.23
[59]

In consideration of different methods for measuring neutralizing antibodies between the studies, direct comparison of vaccine immunogenicity would be misleading. GMR: Geometric
mean ratio of control.
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2.1.3. V-01

Livzon Mabpharm’s V-01 vaccine utilizes a unique design, incorporating the original
SARS-CoV-2 RBD in a dimer-IFN-Pan Fc fusion. This design stimulates dendritic cell
migration to lymph nodes, enhancing antigen presentation. Preclinical mouse trials showed
that low-dose IFN-PADRE-RBD-Fc (I-R-F) triggered a strong CD8+ T-cell response and
robust antibody response, demonstrating its immunogenic potential against the RBD
monomer [66]. In a study of 10,863 vaccinated adults in Pakistan and Malaysia (Table 3),
participants were randomized 1:1 to receive V-01 or a placebo. By 27 January 2022, V-01
achieved a 47.8% efficacy against symptomatic COVID-19 from 14 days post-vaccination,
fulfilling success criteria (Table 4) [39], with 79.9% efficacy against Delta and 47.0% against
Omicron (Table 4) [39]. Based on these results, V-01 gained EUA in China on 3 September
2023. The predominant solicited local side effect was injection-site pain, mostly mild to
moderate in severity.

2.1.4. Vidprevtyn Beta

On 10 November 2022, the EMA fully approved Vidprevtyn Beta (CoV2 preS dTM-
AS03 (B.1.351)), a monovalent booster vaccine for those aged 18 and older [67]. This
recombinant protein subunit vaccine, manufactured using a baculovirus system, features
the B.1.351 SARS-CoV-2 spike protein sans transmembrane domain and with a T4 foldon
trimerization sequence. It incorporates the AS03 adjuvant, made up of squalene, DL-α-
tocopherol, and polysorbate 80 [64]. Efficacy assessments for Vidprevtyn Beta were derived
from two immunobridging trials comparing its immune response with that induced by
Comirnaty (Pfizer-BioNTech mRNA vaccine), a licensed COVID-19 vaccine (Table 3). In
the VAT00013 study, Vidprevtyn Beta was used as the booster injection following initial
vaccination with a COVID-19 mRNA vaccine. Pseudovirus neutralization assays indicated
higher geometric mean titers (GMTs) of nAb against Omicron BA.1, BA.4/5, and D614G
at both Day 28 and 3 months post-vaccination, compared to Comirnaty. The Geometric
Mean Titers Ratio (GMR) of Vidprevtyn Beta relative to Comirnaty on Day 28 was 2.53
and 2.50 against BA.1 and B.4/5 strains, respectively (Table 5). At month 3, the GMR of
Vidprevtyn Beta relative to Comirnaty was 2.06 and 2.48 against BA.1 and BA.4/5 strains,
respectively [40]. In the VAT00002 study, Vidprevtyn Beta was given as a booster injection
in participants primed with various types of COVID-19 vaccines (Table 3). Fourteen days
after vaccination, the GMR of the Vidprevtyn Beta booster relative to the pre-booster against
the B.1.351 strain ranged from 38.5 to 72.3, and ranged from 14.4 to 28.6 for the D614G
strain [64]. The most common adverse reactions observed with Vidprevtyn Beta in the
studies were pain at the injection site, headache, myalgia, malaise, arthralgia, and chills.
Most adverse reactions were mild to moderate in severity and occurred within 3 days
following vaccination [64,67].

2.1.5. SCB-2019

Clover Biopharmaceuticals’ SCB-2019 is a protein-based COVID-19 vaccine, merging
the SARS-CoV-2 Wuhan-Hu-1 spike protein trimer with the CpG 1018/Alum adjuvant,
preserving the spike’s natural trimeric structure to enhance the immune response [68]. A
Phase 1 trial showed dose-dependent neutralizing antibody increases against the matching
strain and cross-protection against the Alpha, Beta, and Gamma variants [69]. Advanc-
ing to a global Phase 2/3 study across five continents, 29,000 adults were randomized
to receive SCB-2019 or placebo at a 1:1 ratio, 21 days apart [70]. By 10 August 2021, effi-
cacy among SARS-CoV-2-naïve participants reached 67.2% for any severity of COVID-19,
83.7% for moderate to severe cases, and 100% against severe disease (Table 4) [41], with
variant-specific efficacies of 78.7% for Delta, 58.6% for Mu, and 91.8% for Gamma [41].
An adolescent extension study (12–17 years) showed higher GMT of nAb (271 IU/mL)
against SARS-CoV-2 compared to young adults (18–25 years; 144 IU/mL), with a GMR
of 1.9, surpassing the non-inferiority threshold (Table 5) [42]. In adults, mild to moderate
reactions dominated, with balanced severe AEs between SCB-2019 (34/808) and placebo
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(48/793) groups. Adolescents experienced even fewer AEs with no vaccine-related SAEs,
highlighting SCB-2019’s good tolerability.

SCB-2019’s immunogenicity and safety as a heterologous booster in Filipino adults
(18–80) previously given different COVID-19 vaccines were assessed (Table 3). About
420 participants per cohort, vaccinated with Comirnaty, CoronaVac, or Vaxzevria, were 1:1
randomized for homologous or SCB-2019 heterologous boosters. Fifteen days post-boost,
SCB-2019 increased nAb GMT against the original SARS-CoV-2 variant across various
groups, with GMRs (day 15/baseline) of 1.53 for participants primed with Comirnaty, 7.44
with CoronaVax, and 3.15 with Vaxzevira, respectively. The specific GMRs of heterolo-
gous/homologous boosters were 0.36 (SCB-2019/Comirnaty), 4.63 (SCB-2019/CoronaVax),
and 1.68 (SCB-2019/Vaxzevira), respectively (Table 5) [43]. The results implied that heterol-
ogous boosting with SCB-2019 was non-inferior to homologous boosting with Vaxzevria,
superior to CoronaVac but less than Comirnaty (Table 5). Neutralization against Delta
and Omicron variants post-heterologous boosting with SCB-2019 exceeded homologous
boosting with CoronaVac or Vaxzevria but lagged behind Comirnaty [43]. By 31 October
2022, no fatalities or immediate injection-related reactions were noted; medically attended
AEs were infrequent and evenly distributed. Local reactions were temporary, resolving
within the observation period, while most systemic AEs were mild or moderate, with rare
severe cases; headache and fatigue were the most commonly reported. In December 2022,
SCB-2019 was grounded for EUA in China, designated for second boosters, prioritizing
seniors, the immunocompromised, and those with comorbidities [71].

2.2. Multivalent COVID-19 Vaccines
2.2.1. SCTV01C/SCTV01E/SCTV01E-2

SCTV01C, a Chinese bivalent recombinant protein vaccine by Sinocelltech, combines
S-ECD of the Alpha and Beta variants with the SCT-VA02B adjuvant, a squalene-based
emulsion. Preclinical research indicated that SCTV01C induced strong Th1-cell responses
and broad neutralizing antibodies against multiple SARS-CoV-2 strains, including D614G,
Alpha, Beta, Delta, Gamma, Omicron, Lambda, Mu, Iota, Kap-pa, Epsilon, C.36.3, B1.618,
and 20I/484Q [72]. In Phase 1/2 trials focused on safety and immunogenicity, SCTV01C
effectively boosted nAb titers against Delta (approx. 4000) and Omicron BA.1 (approx.
1000) in those previously vaccinated with inactivated or mRNA vaccines (Tables 3 and 5).
Only 1.9% of recipients reported grade 3 fevers, with no fatalities, SAEs, or adverse events
of special interest (AESIs) reported. SCTV01C’s reactogenicity resembled that of inacti-
vated vaccines [44,45]. SCTV01C was granted EUA in China on 4 December 2022, en-
dorsed as a booster after being vaccinated with inactivated vaccines and for previously
infected individuals.

SCTV01E, Sinocelltech’s next-generation COVID-19 vaccine, includes S-ECDs of Al-
pha, Beta, Delta, and Omicron BA.1, formulated similarly to SCTV01C with the SCT-VA02B
adjuvant. A Phase 3 study in the United Arab Emirates included two cohorts: Cohort
1 (n = 1351) included adults aged 18 years and above; these adults had been previously
vaccinated with BBIBP-CorV or infected with SARS-CoV-2 post-first dose. Participants
in cohort 1 were randomized to receive one dose of BBIBP-CorV, SCTV01C, or SCTV01E.
SCTV01E showed heightened neutralizing antibodies against Delta, Omicron BA.1, and
BA.5 versus SCTV01C and BBIBP-CorV; the day 28 GMRs were 9.56 (SCTV01E/BBIBP-
CorV) and 1.50 (SCTV01E/SCTV01C) for Omicron BA.1, 7.26 (SCTV01E/BBIBP-CorV)
and 1.15 (SCTV01E/SCTV01C) for Delta, and 8.61 (SCTV01E/BBIBP-CorV) and 1.20
(SCTV01E/SCTV01C) for BA.5 (Table 5) [46]. Cohort 2 (n = 451) included participants
with SARS-CoV-2-infection history or BNT162b2 vaccination; they received one dose of
BNT162b2, SCTV01C, or SCTV01E, where SCTV01E surpassed BNT162b2 against BA.1
(GMR, 1.55) and BA.5 (GMR, 1.28) (Table 5) [47]. Another ongoing Phase 3, double-blind
study examined SCTV01E’s booster efficacy among adults ≥18 who completed primary
COVID-19 vaccination or received a booster (Table 3).



Vaccines 2024, 12, 579 14 of 20

In an immunogenicity study on SCTV01E, Wang et al. reported that a booster dose
of SCTV01E induced notably higher neutralizing antibodies against all tested variants—
including WT, B.1.351, and newer strains like BA.5, BF.7, XBB.1.5—compared to break-
through infections with BA.5/BF.7/XBB variants [48]. The SCTV01E booster group also
showed elevated neutralization against diverse emerging XBB sub-lineages, such as includ-
ing XBB.1.5/XBB.1.9.1, XBB.1.5.68, XBB.1.16, XBB.1.16.1, XBB.1.16.6, XBB.1.17.1, XBB.1.19.1,
XBB.1.22.1, FY.2, FY.4, EG.1, EG.5, EG.5.1, FD.1.1, HK.3, EU.1.1, FG.1, XBB.2.3, XBB.2.3.3,
XBB.2.3.11, and BA.2.86, compared to breakthrough infections with BA.5/BF.7/XBB
variants [48]. Following these favorable results, SCTV01E was granted EUA in China on
22 March 2023 as a booster for individuals who have completed their primary COVID-19
vaccination regimen.

SCTV01E-2, an antigen-adjusted version derivative of SCTV01E, follows the same man-
ufacturing protocol but integrates updated S-ECD components from Beta, Omicron BA.1,
BQ.1.1, and XBB.1. A clinical trial on safety and immunogenicity enrolled 429 adults ≥18,
randomized equally between SCTV01E and SCTV01E-2 groups (Table 3). Fourteen days
post-vaccination, the GMT of nAb against Omicron EG.5 rose 5.7-fold in SCTV01E and 9.0-
fold in SCTV01E-2 recipients; the GMR of SCTV01E-2/SCTV01E was 1.8 (95%CI: 1.5, 2.1),
with higher seroconversion rates shown in the SCTV01E-2 group (Table 5). With respect
to the GMT of nAb against Omicron XBB.1, it escalated 5.5-fold in the SCTV01E group
and 5.9-fold in the SCTV01E-2 group, yielding a GMR of 1.3 (95%CI: 1.1, 1.5) (Table 5) [49].
SCTV01E-2 obtained EUA status in China on 1 December 2023.

2.2.2. Bimervax

The antigenic component of Bimervax comprises a SARS-CoV-2 virus recombinant
spike (S) protein RBD fusion heterodimer, encompassing the Alpha and Beta strains, syn-
thesized by recombinant DNA technology, utilizing a plasmid expression vector in a CHO
cell line. Adjuvanted with SQBA, the immunogenicity of Bimervax was assessed in two
multicenter clinical trials. In a pivotal phase 2b study, 765 participants, previously fully
vaccinated with the mRNA vaccine, received a single dose of Bimervax (n = 513) or Comir-
naty (n = 252) (Table 3) [65]. Post-vaccination, Bimervax elicited robust production of
nAb against the D614G, Beta, Delta, and Omicron BA.1 variants, with respective GMTs of
1953.89, 4278.92, 1466.65, and 2042.36 recorded 14 days post-injection, respectively. The
GMRs of Comirnaty/Bimervax were 0.62 against Beta and 0.60 against Omicron BA.1,
meeting the pre-specified criteria for Bimervax’s superiority over Comirnaty (Table 5).
Regarding the Delta variant, the GMT was 1466.65, and the associated GMR of Comir-
naty/Bimervax was 1.02, meeting the pre-specified criteria for Bimervax non-inferiority
to Comirnaty (Table 5) [65]. In a single-arm study, the immunogenicity of Bimervax was
evaluated among 2646 participants previously fully vaccinated with various COVID-19
vaccines, including Comirnaty, Spikevax, and Ad26.COV2-S (Table 3). Stratified by their
previously received COVID-19 vaccines, the GMTs of nAb against the D614G, Beta, Delta,
and Omicron BA.1 variants were comparable between the Comirnaty and Spikevax sub-
groups, while numerically lower GMTs were observed in the Ad26.COV2-S subgroup
(Table 5) [50,65]. Based on these compelling data, the EMA issued EUA for BIMERVAX
as a booster for active immunization against COVID-19 in individuals aged 16 years and
older who had previously received a mRNA COVID-19 vaccine on 30 March 2023 [73]. The
most frequently reported adverse reactions included injection-site pain (82.2%), headache
(30.2%), fatigue (30.9%), and myalgia (20.2%). The median duration of local and systemic
adverse reactions was 1 to 3 days, with the majority being mild to moderate and occurring
within 3 days post-vaccination [65].

2.2.3. Recombinant COVID-19 Trivalent (XBB + BA.5 + Delta) Protein Vaccine (Sf9 Cell)

On 8 June 2023, China’s NMPA approved the Recombinant COVID-19 Trivalent (XBB
+ BA.5 + Delta) Protein Vaccine (Sf9 Cell) as a booster for those previously vaccinated or
infected with SARS-CoV-2. This vaccine, based on RBD-HR/trimer design with sequences
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from XBB.1.5, BA.5, and Delta, is produced via a Bac-to-Bac Baculovirus system and purified
to homogeneity [74]. Coupled with an MF59-like adjuvant, its efficacy and immunogenicity
were meticulously evaluated in a study involving 2905 adults over 18 (Table 3). Fourteen
days post-vaccination, GMTs against a number of SARS-CoV-2 Omicron subvariants,
including XBB.1, XBB.1.5, XBB.1.16, XBB.1.9.1, XBB.2.3, BQ.1, BF.7, BA.4/5, and BA.2.75,
showed 6.9- to 39-fold increases over the baseline. Specifically, GMTs against Omicron
XBB.1.5, XBB.1.16, XBB.1.9.1, XBB.2.3, BA.4/5, BF.7, BQ.1, and BA.2.75 increased to 1728.26,
1093.67, 616.03, 1112.53, 3235.68, 2052.24, 1329.77, and 3681.23, respectively, reflecting 39.19-,
8.8-, 12.87-, 12.42-, 15.52-, 14.14-, 12.65-, and 23.63-fold increases, respectively [59]. The
vaccine demonstrated a substantial efficacy of 93.28% against symptomatic infection of
SARS-CoV-2, starting 14 days post-vaccination (Table 4). Sequencing of the swab samples
revealed that all the symptomatic infections of SARS-CoV-2 were attributable to Omicron
XBB variants, including the XBB.1, XBB.1.5, and XBB.1.9 subvariants [59]. As of the cutoff
date of 15 May 2023, safety analysis from 1565 participants indicated that most AEs were
grade 1 or 2, with no reported grade 3 or above AEs [59].

2.2.4. Novel Recombinant COVID-19 Bivalent (Original/Omicron XBB) Vaccine (CHO Cell)

The novel Recombinant COVID-19 Bivalent Vaccine (produced in CHO cells) repre-
sents the second generation within the V-01 COVID-19 vaccine lineage, encompassing both
original and Omicron XBB.1.5 variants/subvariants. Following an immunogenicity and
safety study, the vaccine was granted EUA by the regulatory authority of NMPA in China
on 1 December 2023. Results from the clinical study showed a peak in the GMT of nAb at
14 days post-vaccination, which was maintained up to 28 days post-injection. Notably, the
GMT of nAb against Omicron XBB.1.9.1 reached 407.9, superior to the progenitor vaccine,
V-01 [75]. In addition to its efficacy against XBB.1.9.1, this novel Recombinant COVID-19
Bivalent Vaccine exhibited robust neutralization activity against a diverse array of SARS-
CoV-2 XBB subvariants, including EG.5.1, XBB.1.9.1, XBB.1.16, and XBB.1.5. Among the
4750 participants enrolled, most reported AEs were mild, indicating a favorable safety
profile similar to the progenitor vaccine, V-01 [75].

3. Future Strategies Dealing with Constantly Emerging SARS-CoV-2 Variants

To address the challenges posed by SARS-CoV-2 evolution, the Centers for Disease
Control and Prevention (CDC) collaborates with others to monitor wastewater for the
virus, enabling the tracking of changes in new SARS-CoV-2 variants and subvariants. This
proactive approach enables communities to take swift action to prevent the spread of
the infections [76]. Additionally, the WHO has established the TAG-CO-VAC to review
and assess the public health implications of emerging SARS-CoV-2 VOCs on COVID-19
performance. The group also provides recommendations to the WHO on COVID-19 vaccine
composition [77].

Recognizing the immune-evasive nature of XBB descendant lineages, both TAG-CO-
VAC and VRBPAC recommended a mono-antigen composition for the 2023–2024 COVID-19
vaccine formulation, focusing on the Omicron XBB.1.5 subvariant spike protein [11,12].
Nevertheless, given uncertainties about the timing, specific mutations, and antigenic
characteristics of future variants, TAG-CO-VAC also noted that alternative formulations
and platforms capable of eliciting robust neutralizing antibody responses against XBB
descendant lineages should be considered. Developing multivalent COVID-19 vaccines
with careful antigen selection and combinations may also offer a viable solution. This
strategy is supported by favorable evidence from multivalent vaccines, such as SCTV01E,
SCTV01E-2, Recombinant COVID-19 Trivalent Protein Vaccine (XBB + BA.5 + Delta) (Sf9
Cell), and Novel Recombinant COVID-19 Bivalent Vaccine (Original/Omicron XBB), which
showed broad cross-neutralization against current and future variants and subvariants.
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4. Conclusions

As SARS-CoV-2 continues to evolve, ongoing surveillance and adaptation of vaccine
formulations will be essential to ensure continued effectiveness against emerging variants.
Protein-based COVID-19 vaccines stand out as a compelling option due to their robust
immunogenicity and efficacy, coupled with cost-effective storage and transportation condi-
tions, making them potentially one of the most effective vaccine platforms. Monovalent
and multivalent COVID-19 vaccines are two strategies for developing protein-based vac-
cines; notable examples of monovalent COVID-19 vaccines include NVX-CoV2373, ZF2001,
V-01, Vidprevtyn Beta, and SCB-2019, whereas multivalent COVID-19 vaccines are exem-
plified by SCTV01C, SCTV01E, SCTV01E-2, Bimervax, Recombinant COVID-19 Trivalent
(XBB + BA.5 + Delta) Protein Vaccine (Sf9 Cell), and Novel Recombinant COVID-19 Biva-
lent (Original/Omicron XBB) Vaccine (CHO Cell). While the monovalent COVID-19 vac-
cines demonstrated favorable efficacy and immunogenicity profiles against the pandemic
variants, the multivalent COVID-19 vaccines showed enhanced capability, with broad-
spectrum protection.

Considering the uncertainty and coexistence of various variants and subvariants of
SARS-CoV-2, it is essential to develop a COVID-19 vaccine with broad and robust immuno-
genicity. Each variant contributes unique neutralizing epitopes, thereby broadening the
spectrum of neutralizing antibodies. Moreover, certain mutation peptides observed across
multiple variants are likely to persist in future emerging strains, potentially enhancing
cross-reactivity with new variants. For instance, the Alpha variant exhibits the highest
identity rate with the Omicron variant (99.63%) [78]. Mutations, such as T95I, G142D,
K417N, T478K, N501Y, P681H, delta69/70, and delta145, are shared among the Alpha,
Beta, Delta, Gamma, or Omicron variants and are linked to increased transmissibility [79].
Therefore, multivalent vaccines with careful antigen selection present a promising strategy
to address the rapid evolution of SARS-CoV-2.
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